Hexo功能测试

Hexo功能测试

引用

引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用
引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用
引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用引用

代码块

test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <iostream>

using namespace std;

// 基类
class Shape
{
public:
// 提供接口框架的纯虚函数
virtual int getArea() = 0;
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
protected:
int width;
int height;
};

// 派生类
class Rectangle: public Shape
{
public:
int getArea()
{
return (width * height);
}
};
class Triangle: public Shape
{
public:
int getArea()
{
return (width * height)/2;
}
};

int main(void)
{
Rectangle Rect;
Triangle Tri;

Rect.setWidth(5);
Rect.setHeight(7);
// 输出对象的面积
cout << "Total Rectangle area: " << Rect.getArea() << endl;

Tri.setWidth(5);
Tri.setHeight(7);
// 输出对象的面积
cout << "Total Triangle area: " << Tri.getArea() << endl;

return 0;
}

数学公式

f(x)=ex2dxn=11n2=π26limx(1+1x)x=e\begin{aligned} &f(x) = \int_{-\infty}^{\infty} e^{-x^2} dx \\ &\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \\ &\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \end{aligned}

图片测试